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A few conventions and definitions

Throughout, ∆ and Γ are infinite countable groups, (often non finitely generated). X

is the Cantor space 2ω.

An action of Γ on X is:

• topologically transitive if it admits a dense orbit, equivalently:

∀U,V nonempty open ∃γ ∈ Γ γU ∩ V ̸= ∅

• minimal if all orbits are dense, equivalently there is no nontrival invariant closed

subset.
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The space of actions

The space A(Γ) of actions of Γ on X carries a natural Polish topology. Basic open sets

are of the form

{α : ∀γ ∈ F α(γ) ∈ Uγ}

where F ⊂ Γ is finite and each Uγ is open in Homeo(X ).

If α is a factor of β (i.e. there is a continuous Γ-equivariant map from (X , β) to

(X , α)) then α belongs to the closure of the conjugacy class of β.

Question

• What can one say about generic properties of elements of A(Γ)?

• How do those generic properties depend on Γ?
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Existence of comeagre conjugacy classes

Homeo(X ) acts (topologivally transitively) on A(Γ) by conjugacy, Hence any

Baire-measurable (e.g. Borel) conjugacy invariant subset of A(Γ) is either meagre or

comeagre.

This applies in particular to conjugacy classes; in A(Z) there is a comeagre conjugacy

class (Kechris–Rosendal), not in A(Z2) (Hochman).

No Γ s.t. A(Γ) has a comeagre conjugacy class and Γ is not finitely generated is known.
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Subshifts

Definition
A subshift is a nonempty invariant closed subset of AΓ, where A is some finite alphabet.

Given α : Γ ↷ X and A = {A0, . . . ,An−1} a clopen partition of X , define for x ∈ X

SA(x)(γ) = i ⇔ x ∈ α(γ)Ai

Then SA(X ) is a subshift of nΓ, and SA is Γ-equivariant. That way one can see α as

an inverse limit of subshifts.
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SFTs and sofic shifts

Definition
A subshift S ⊂ AΓ is:

• of finite type (SFT) if there exists a finite F ⊂ Γ and some P ⊂ AF s.t.

∀x (x ∈ S) ⇔ (∀γ ∈ Γ x|γF ̸∈ P)

• sofic if it is a factor of an SFT.

The space of subshifts on A carries the Vietoris topology; SFTs are dense so every

isolated subshift is an SFT.
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Doucha’s criterion

M. Doucha gave a criterion for the existence of a comeager conjugacy class in A(Γ),

which requires that for all n the “projectively isolated subshifts” (a class of sofic shifts

which includes every factor of an isolated subshift) be dense in the space of subshifts

of AΓ.

An element with a comeagre conjugacy class (when it exists) is an inverse limit of

projectively isolated subshifts.
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The non-f.g. case

Theorem
Assume Γ is not finitely generated, and S ⊂ AΓ is a subshift. Then

• S is isolated iff S is a minimal SFT.

• S is projectively isolated iff S is minimal sofic.

Thus if A(Γ) has a comeagre conjugacy class then the generic element must act

minimally (for Γ not f.g.).

Theorem
Assume that Γ is infinite, locally finite. Then Γ has no nontrivial minimal sofic

subshifts. Hence in that case there is no comeagre conjugacy class in A(Γ).

I do not know any example of a minimal sofic subshift on a non-f.g. group.
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Genericity of minimality

Question (Kechris)
For which Γ is it the case that a generic element of A(Γ) is minimal?

This is obviously the case for Fω (topologically transitive actions are not dense), and

never happens for Γ finitely generated.

Proposition
Assume that Γ admits a central element of infinite order. Then Min(Γ) is not dense in

A(Γ).

This question does admit a surprisingly neat answer for amenable groups.
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Co-induction

Fix two countable groups Γ ≤ ∆, as well as an action of Γ on X . ∆ naturally acts on

X∆ via δ1 · f (δ2) = f (δ−1
1 δ2).

Define π : X∆ → X by π(f ) = f (1).

Looking for a ∆-invariant Y ⊆ X∆ such that π is Γ-equivariant, one ends up with

Y =
{
f ∈ X∆ : ∀δ ∈ ∆ ∀γ ∈ Γ γ · f (δ) = f (δγ−1)

}
∆ ↷ Y is called the co-induced action. Morally Y = X∆/Γ with a “twisted ” action of

∆.
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Genericity of topological transitivity

Theorem
Assume that Γ ≤ ∆ and [∆: Γ] is infinite. For any α ∈ A(Γ) the co-induced action α̃ is

topologically k-transitive for all k.

Corollary
For any non-f.g.group ∆ a generic element of A(∆) is topologically k-transitive for all

k .

Proof.
Pick U open nonempty in A(∆). There are Γ = ⟨γ1, . . . , γn⟩, α : Γ ↷ X and A a

clopen partition of X s.t. any ∆-action β with β(γi )|A = α(γi )|A belongs to U.

(A conjugate of) the co-induced action of α|Γ belongs to U, and is topologically

k-transitive for all k by the previous proposition. Conclude by observing that this is a

Gδ condition.
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The amenable, non locally finite case

Definition
α ∈ A(Γ) is shrinking if there exist γ1, . . . , γn ∈ Γ and U1, . . . ,Un ∈ Clopen(X ) s.t.⊔

Ui = X ,
⊔

γiUi ⊊ X .

The set of shrinking actions is open and conjugacy invariant, hence dense as soon as it

is nonempty.

Proposition
Assume that Γ is infinite and not locally finite. Then there exists a shrinking α ∈ A(Γ).

Corollary
If Γ is infinite, amenable and not locally finite, a generic element of A(Γ) is not

minimal. Hence conjugacy classes in A(Γ) are meagre if Γ is amenable and not finitely

generated.
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Good measures

Definition
A Borel probability measure µ on X is a good measure if µ is atomless, has full

support and for all A,B ∈ Clopen(X )

(µ(A) ≤ µ(B)) ⇔ (∃C ∈ Clopen(B) µ(A) = µ(C ))

The clopen value set V (µ) is {µ(A) : A ∈ Clopen(X )}.

Theorem (Akin)
If µ, ν are good measures on X such that V (µ) = V (ν) then

∃g ∈ Homeo(X ) g∗µ = ν.
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The locally finite case

Theorem
Assume that ∆ is infinite and locally finite. Then a generic element of A(∆,X ) is

minimal and uniquely ergodic.

For a generic α, the unique α-invariant measure µ is good and

V (µ) =

{
n

|Γ|
: n ∈ {0, . . . , |Γ|}, Γ a finite subgroup of ∆

}

13
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